
Remote Objects Message 13xcllange (ROME)

Scott Hudcigh
Jet Propulsion Laboratory, California Institute of Technology

Scott. C.llurleigh@jpl. nasa.gov

Problem

The performance of a single program running on a single processor is limited by the character of
the processor. Moreover, the cost and difficulty of developing and sustaining programs tend to
increase as their size and complexity increase. Clearly there ought to bc some advantage in
partitioning powerful application software into relatively small and simple components that can
run in parallel on multiple processors: the software should run faster and it S11OU1CI be cheaper and
easier to deploy.

Object-oriented software development, using languages such as C+-+, offers promise as an
effective means of partitioning functionality to reduce programming cost, but the problem of
paral]elization has proven less tractable. Not all parallelization improves performance, because
communicate on costs can offset the performance gains achieved through concurrent executi on. In
addition, the balance between these two can change in response to changes in operating
conditions: changing (e.g., seasonal) usage patterns, changes in network traffic, migration to new
hardware, etc. It is therefore important to bc able to change the manner in which elements of an
application are distributed, both during development and in practical operation, but historical y
such change has been risky and expensive: intcrprocess communication (I PC) has required
specialized skil 1s of developers, distributed software can be difficult to test and debug, and
support for operation in a heterogeneous platform environment has often been inadequate.

Objective

Remote Obj ccts Message Exchange (ROME) [Bur93] is an attempt to provide a single relatively
simple, universally available abstraction for data communication among C+-+ objects, It aims to
enable the C++ application developer to specify objects’ interactions with other objects wholly
in terms of the application domain, without concern for the details of i nterprocess
communication. Every ROME-compliant object is conceptual 1 y a network peer of every other,
as if each one were (for example) a separate UNIX process.

Siraicgy

Some types of technology common] y used to implement distributed object-oriented software
were specifically discarded during the design of ROME.

Remote Procedure Calls.

Most C-t-+- programmers are former C programmers, and the standard mechanism
for flow of control and data in a C program is the function call. One way to
implement C+-+- inter-object communication would be to enable the invocation of
the member functions (“methods”) of objects residing on remote machines, as in
[WHD89]. However, the commonly understood semantics of functions calls are
inherently synchronous: execution is suspended at the point of fhnction
invocation, control is passed to the specified function, the function maps input
parameters to a unique output value (often with some side effects) and
relinquishes control, and execution resumes at the first statement foil owi ng the
function call. The possibility of a program doing multiple things ccmcurrently is
alien to these semantics.

Naturally, it’s possible to provide a mechanism to enable a function’s side effects
to continue after the function has returned control, but this changes the rules of
programming in ways that the developer may not fully understand [CK92].
Furthermore, RPC schemes often rely on the availability of distributed virtual
m emery, which Ii r-nits their usefulness to environments with sophisticated
operating systems and high available network bandwidth.

IPC objects,

Another approach would be to define classes of objects whose methods can be
invoked by “client” code (standalone functions or the methods of other objects) to
perform interprocess communication. The drawback to this mechanism is that it
would require that application code know which application objects will be local
(such that their methods may simply be invoked using the standard C+-+ call
syntax) and which will be remote (accessible only through IPC objects). This
conflicts with our goal of m ini mum-effort redistribution of application
functionality.

The ROME strategy is instead to provide base classes which encapsulate interobject
communication capability in simple asynchronous message exchange methods. ROME-
compliant objects are instances of classes that inherit from these base classes; they interact by
sending actual messages, not by directly invoking one another’s member functions, and they do
so whether they reside in the same address space, different address spaces on the same
processor, or different processors. The developer of a ROME application works with a single,
simple abstraction for all communication among obj ccts that are potential] y di stributcd, whether
or not they will actually be distributed at run time.

Note that only ROME-compliant objects can send messages; stand-alone C or C+--- functions are
specifically excluded from participation in ROME. That is, ROME is intended to encourage
“pure” object-oriented programming in which all processing is accomplished by objects’
methods; a ROME application is a population of cooperating autonomous, quasi-animate objects

that exchange messages with one another and, possibly, with other objects in other applications.
The rationale for this constraint is partly aesthetic -- a homogeneous population of animate peers
seems “cleaner” and simpler than a body of non-object client code that calls the member
functions of some other collection of passive objects -- but it has a practical basis as well: absent
an extension of the C++- language or a multithreading mechanism (either of whi ch would to some
degree conflict with our goal of universal availability), it is much easier to distribute instances of
c1 asses at run time than instances of functi ons. Peer-to-peer obj cct architect ure seems to be a
good fit for parallel processing.

Handwritten correspondence being a familiar model for asynchronous communication, ROME is
built on a mail service metaphor. Like any postal system, ROME comprises two distinct
organizational structures:

lnfrastructur~

A ROME “universe” comprises one or more dis/ricis, each roughly corresponding
to a local area network; communication delays among ROME objects within a
single district should be on the order of seconds or less, while delays in
communication bet ween objects in different di stricts may be arbitrarily longer.
Each district comprises one or more postal zones, each instantiated as a single
operating system task or process. Each zone has a sing] eposf oy~ce object, Each
post office has one receising bay object for each protocol by which the zone can
receive messages, and it also has one sh@ping bay object for every other zone that
receives messages by one of the protocols by which this zone knows how to send
data. These shipping and receiving bays encapsulate all knowledge of IPC
protocols in the application, The post offlccs of two different zones can
communicate if they are either directly mutually reachable (i.e., they share a
common protocol) or indirectly mutually reachable (i.e., they can both
communicate, either directly or indirectly, with some intermediary zone’s post
Office).

Utilization

The “customers” of this postal service infrastructure are ROME-compliant
application software objects cal 1 ed correspondents, instances of cl asses derived
from the ROME Correspondent base class. Every correspondent resides in a
single zone (but some kinds of correspondent can migrate from zone to zone). A
collection of correspondents that work together to accomplish some well-defined
task is a comnmily; typically each instance of a discrete application is likely to bc
a separate community, A community must be wholly contained within a single
district but may comprise objects residing in any number of different zones in that

,, . .

district. Note, though, that correspondents may exchange messages with
correspondents in other communit i es. Any correspondent may exchange
messages with any other correspondent in any district of the same “universe”
provided the post offices of the zones in which the two correspondents reside can
communicate,

Each correspondent in a zone is assigned a distinct post office box into which
messages addressed to that correspondent are placed by the post office. The
mailing address of any correspondent is the concatenation of the district number
and zone number of the zone it resides in, together with its box number.

A ROME application is developed by defining application-specific correspondent class
definitions, compiling them, and linking them with ROME libraries and object files. The resulting
executable -- which, when loaded, becomes a zone -- automatically constructs a post office,
taking self-configuration parameters from command line arguments (district name, zone name, and
specifications for all receiving bays). The post office integrates itself into its assigned district and
the rest of the universe, and then enters an event loop in which it receives messages from other
zones and distributes them to its customers (the correspondents residing in the zcme).
Correspondents’ methods are invoked only by the post office itself, which “calls back” to them
when mail arrives that is addressed to them.

In the course of performing a method, a correspondent may send a message to another
correspondent; it does so by invoking a post office member function named post, post examines
the destination address of the message. If the district/zone of the address is the same as that of
the sender (the local zone), then the message is simp]y appended to a queue of undelivered mail;
otherwise the message is handed to appropriate shipping bay for immediate interprocess
transmission (see Figure 1). When the correspondent method concludes and the post office’s
event loop regains control, all undelivered messages are delivered (possibly causing the posting of
additional messages, etc.). After no more undelivered mail remains in the post oftlce’s queue, the
post office waits for a message from another zone to arrive. When one does, the appropriate
receiving bay receives it and inserts it into the post ofllce’s queue of undelivered mail; this
triggers delivery of all undelivered mail, possibly causing the posting of additional messages, and
so on,

Features

ROME is based on asynchronous message exchange, but some programming problems
require synchronous processing: some subset of the state of a given object must remain
unchanged until the object receives a response to a message it has sent. To accommodate
these situations, ROME includes a pwjcct mechanism. A project is an object that
encapsulates a message-handling context. To initiate pseudo-synchronous

!,

w

CD
L
3
u)

.F--

Ll_

. .

,.

communication, a correspondent creates a project and attaches that project’s ID to the
message it sends; it can then return control to the post office. The recipient of the
message eventually sends a reply message citing the same project ID. When the post
ofllce receives a message citing a project ID it calls back to the handler specified for that
project (rather than to the addressee’s standard message handler); the handler resumes
processing, in the same context in which the correspondent sent the original message.

Timeout intervals can also be specified for proj ccts. If a project timeout expires before a
reply is received that would cause it to be resumed, the project handler is called anyway
and informed that the requested reply is overdue, Moreover, a correspondent can request
arbitray “wake-up calls” at specified intervals by creating a project with a timeout and
simply suspending it, without citing it in an issued message.

Note that any number of messages can be handled by the correspondents in a zone,
including the initiator of a project, while that project initiator waits for a reply to a
message, Each project is, in effect, an extremely lightweight thread of object method
execution; that is, projects implement a rudimenta~ form of platform-independent fme-
grained multithreading at the object level.

The recipient of a message requiring a reply might not be equipped to compute an
adequate response. When this is the case, the correspondent can refer (relay) the message
to another correspondent for processing. Messages can be re-referred any number of
times, but the reply to a referred message always goes directly to the original issuer rather
than back through the chain of referees.

Broadcas(

Associated with each message is an integer that identifies the .whject of the message;
subjects play the same role as member function names or method selectors in standard
object-oriented programming, se] ecti ng the function that is to process the message when it
is received. A correspondent may subscribe to a subject, and the issuer of a message can
publish it simply by specifying no particular addressee; publishing a message causes
copies of it to be sent automatically to all correspondents who have subscribed to the
message’s subject.

Anomaly handling

ROME provides an anomaly-handling object that encapsulates system and application
anomaly processing. User-written anomaly handling can be substituted for the standard
methods (which do little more than plint messages to stderr) without affecting any
ROME or application code.

.,

,. #

Mi~ration

As noted
class can

above, correspondents derived from the ROME RovingCorrespondent base
migrate from one zone to another. This may enable support for such

capabilities as automatic load balancing in the future.

infrastructure confi zurati on

ROME districts configure themselves automatically as the zones that comprise them are
initiated, The post office of the first zone in a district automatically becomes the
district’s registrar and writes an ASCII string describing itself (including all information
needed to communicate with it via its receiving bays) to a “locator” string in a
predesignated location. Each subsequent new zone’s post office reads every district’s
locator string and registers with the indicated registrars. Each registrar maintains a list of
all active zones in its district, and in response to each registration message it sends a copy
of this list to the new post office for use in communication with other zones in the
district -- and also notifies all other post offices in the district of the new post office’s
arrival. If a registrar terminates, the other post offices in the district compete to become
the new registrar; each is equipped to do so, since all post offices know about all other
post offices.

In the event that an object in zone A sends a message to an object in zone 13, where the
post otllce of B is unable to receive data using any of the protocols that A’s post office
can transmit on, A’s post office will send the message to some intermediary zone C. C
will be a zone that can receive what A sends and can in turn send data using either one of
B’s protocols or one understood by yet another intermediary D, and soon until the
message eventual I y reaches II. Routes through these gateways are automat i call y
computed by post offices as new post oftlces register, and routes are automatically
recomputed when post offices that served as gateways terminate.

No configuration files, dedicated configuration servers, routing tables, or environment
variables need be modified to change the configuration of a ROME communication
universe, since none are used.

)’latform indc~e ndence

ROME was designed for minimal dependence on features of specific compilers or
operating systems: the library calls it relies on are those that are in most cases available in
any good C++ development environment. Platform dependencies are isolated in a single
header file. ROME has been successfully and relatively easily ported from SunOS 4.3 on
SPARC machines to HP-UX, to IRIX on Silicon Graphics workstations, and to VxWorks
on Heurikon MC-68040-based single-board computers.

Historically, a stubborn obstacle to easy distributed computing has been differences in
binary data representation on different machines: byte order in integers, alignment in
structures, etc. ROME’s solution to this problcm is parce/s. A parcel is an instance of a
class derived from the Parcel base class, which has two pure virtual functions: dcclarc
and acquire. declare marshals the content of a parcel into an array of bytes in a standard
format, and acquire reconstitutes the parcel’s content from such an array. Simple parcel
classes corresponding to the C++ built-in types are supplied with ROME, and instances
of these classes may in general be used interchangeably with C+-+- ints, longs, floats, etc.
Additional parcel classes for arbitrarily complex application-specific structures are fairly
easy to define, provided the attributes of these classes are themselves all instances of
parcel classes: a declare function for a new parcel class amounts to little more than
invoking the declare fhnctions of all the attributes of the class.

Whenever a correspondent sends a message, a single (arbitrarily y complex) parcel can be
sent as the “content” of the message. Since the Message class is itself derived from
Parcel, it’s simple for post oflices to export complex objects to zones running on foreign
computers and be assured that they will be reconstituted correctly when they arrive.

The definitions of the parcel classes for the C+-+- built-in types are hardware-dependent,
but they should be the only code that would need to be rewritten in order to port ROME --
and all ROME applications -- to new hardware.

pr toco I independence

All knowledge of specific protocols is encapsulated in shipping and receiving bay objects.
At this time ROME supports only TCP/IP and UDP/IP protocols, but adapting all of
ROME (and all ROME applications) to -- for example -- invisibly communicate using
DCE RT)CS should entail writing only a few hundred lines of code.

sum)ort for ~ersi stenc~

Entire zones may be configured either for transient existence (instantiation in heap
memory) or, where the Object Store~’M object database managem ent system is available,
for persistence on magnetic disk. This decision is made at the time a ROME application
is compiled, by the selection of a single header file; no application code need be modified.

fhlmort for alternative event contexts

The basic structure of a ROME application is an event loop, in which the post ofllce
responds to message-arrival events by calling correspondents’ message-handling
functions. In some applications, other types of events in addition to ROME message
arrivals may need to be handled. Variants of the standard (“std”) post office event loop

are provided for this purpose: the “ui” event loop handles keyboard keystrokes, the “xui”
event loop handles X Windows events (keystrokes and mouse gestures), and the “wtk”
event loop continuously recomputes a WorldToolKitl’M virtual world while waiting for
ROME messages to arrive.

Comparison with CORIIA

The design goals of ROME in many way resemble those of the ConmIon Obj cct Request Broker
Architecture (CORBA) [OMG91], but the designs themselves differ in several significant ways.

1. Like ROME, COR13A i~~lj)le~~lel}tatiol~s enable objects to pass control and data
among themselves without knowing one another’s implementation details. Unlike
ROME, the intent of CORRA is to support this interaction among objects
implemented in different programming 1 anguages; ROME supports only C+--- intcr-
object communicate on at this time.

2. CORBA is built on a clientiserver RPC communications model; ROME presents
itself to the application programmer as a system for message-passing among peer
objects.

3. CORBA inter-object communication, being based on RPCS, is naturally
synchronous but single-threaded. ROME inter-object communication, being based
on message passing, is naturally asynchronous but includes support for
multithreaded pseudo-synchronous communicate on (proj ect s).

4. COR13A enforces type discipline on interactions among objects, with type
declarations residing in compiled Interface Definition Language (IDL) code or in an
Interface Repository; a client must have knowledge of the interface of an object in
order to invoke one of its methods. ROME enables any message to be sent to any
object of any (correspondent) type; it requires the receiving objects to be
responsible for inspecting the subjects of the messages they receive and
responding appropriately. This simplifies operations such as broadcasting but
precludes compile-time error detection.

In short, the emphasis in the design of CORBA seems to be on support for retaining a familiar
function-calling programming style in a distributed environment of platform (including language)
heterogeneity, with consequent support for parallel processing. The emphasis in the design of
ROME is on support for parallel processing in an event-loop/callback programming style, with
consequent support for p] atform (though not language) hetcrogeneit y.

Acknowlcdgcmcnt

This research was carried out by the Jet Propul sion Laboratory, California Institute of

-. .,

.,

Technology, under a contract with the National Aeronautics and Space Administration.

Rcfe.ll!ncl?s

[Bur93] Scott Burleigh. “ROME: Distributing C++ Object Systems”, lIXE Parallel &
Distributed Technology Systems & Applications, pp. 21-32, May 1993.

[CK92] K. M. Chandy and C. Kesselman. “CC+---: A Declarative Concurrent Object-
Oriented Programming Notation”, Technical Report Cal Tech-CS-TR-92-01,
California institute of Technology, 1992.

[OMG91] Common Object Request Ilroker Architecture and Specification, OMG Document
91.12,1, Object Management Group, December 1991.

[WHD89] Andrew A. Chien, Waldemar Horwat, and William J. Dally. “Experience with
CST: Programming and Implementation”, SIGPLAN 89 Conference on
Programming Language Design and lnl~)lelllel~tatio~l, 1989.

